e-paper-display/bcm2835-1.71/examples/i2c/i2c.c

279 lines
9.2 KiB
C

/*******************************************************************************
*
* i2c.c
*
* Copyright (c) 2013 Shahrooz Shahparnia (sshahrooz@gmail.com)
*
* Description:
* i2c is a command-line utility for executing i2c commands with the
* Broadcom bcm2835. It was developed and tested on a Raspberry Pi single-board
* computer model B. The utility is based on the bcm2835 C library developed
* by Mike McCauley of Open System Consultants, http://www.open.com.au/mikem/bcm2835/.
*
* Invoking spincl results in a read or write I2C transfer. Options include the
* the I2C clock frequency, read/write, address, and port initialization/closing
* procedures. The command usage and command-line parameters are described below
* in the showusage function, which prints the usage if no command-line parameters
* are included or if there are any command-line parameter errors. Invoking i2c
* requires root privilege.
*
* This file contains the main function as well as functions for displaying
* usage and for parsing the command line.
*
* Open Source Licensing GNU GPLv3
*
* Building:
* After installing bcm2835, you can build this
* with something like:
* gcc -o i2c i2c.c -l bcm2835
* sudo ./i2c
*
* Or you can test it before installing with:
* gcc -o i2c -I ../../src ../../src/bcm2835.c i2c.c
* sudo ./i2c
*
* History:
* 11/05 VERSION 1.0.0: Original
*
* User input parsing (comparse) and showusage\
* have been adapted from: http://ipsolutionscorp.com/raspberry-pi-spi-utility/
* mostly to keep consistence with the spincl tool usage.
*
* Compile with: gcc -o i2c i2c.c bcm2835.c
*
* Examples:
*
* Set up ADC (Arduino: ADC1015)
* sudo ./i2c -s72 -dw -ib 3 0x01 0x44 0x00 (select config register, setup mux, etc.)
* sudo ./i2c -s72 -dw -ib 1 0x00 (select ADC data register)
*
* Bias DAC (Arduino: MCP4725) at some voltage
* sudo ./i2c -s99 -dw -ib 3 0x60 0x7F 0xF0 (FS output is with 0xFF 0xF0)
* Read ADC convergence result
* sudo ./i2c -s72 -dr -ib 2 (FS output is 0x7FF0 with PGA1 = 1)
*
* In a DAC to ADC loop back typical results are:
*
* DAC VOUT ADC
* 7FFh 1.6V 677h Note ratio is FS_ADC*PGA_GAIN/FS_DAC = 4.096/3.3 = 1.23
* 5FFh 1.2V 4DCh
* 8F0h 1.8V 745h
* 9D0h 2V 7EAh
* 000h 10mV 004h
*
********************************************************************************/
#include <bcm2835.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#define MODE_READ 0
#define MODE_WRITE 1
#define MAX_LEN 32
char wbuf[MAX_LEN];
typedef enum {
NO_ACTION,
I2C_BEGIN,
I2C_END
} i2c_init;
uint8_t init = NO_ACTION;
uint16_t clk_div = BCM2835_I2C_CLOCK_DIVIDER_148;
uint8_t slave_address = 0x00;
uint32_t len = 0;
uint8_t mode = MODE_READ;
//*******************************************************************************
// comparse: Parse the command line and return EXIT_SUCCESS or EXIT_FAILURE
// argc: number of command-line arguments
// argv: array of command-line argument strings
//*******************************************************************************
int comparse(int argc, char **argv) {
int argnum, i, xmitnum;
if (argc < 2) { // must have at least program name and len arguments
// or -ie (I2C_END) or -ib (I2C_BEGIN)
fprintf(stderr, "Insufficient command line arguments\n");
return EXIT_FAILURE;
}
argnum = 1;
while (argnum < argc && argv[argnum][0] == '-') {
switch (argv[argnum][1]) {
case 'i': // I2C init
switch (argv[argnum][2]) {
case 'b': init = I2C_BEGIN; break;
case 'e': init = I2C_END; break;
default:
fprintf(stderr, "%c is not a valid init option\n", argv[argnum][2]);
return EXIT_FAILURE;
}
break;
case 'd': // Read/Write Mode
switch (argv[argnum][2]) {
case 'r': mode = MODE_READ; break;
case 'w': mode = MODE_WRITE; break;
default:
fprintf(stderr, "%c is not a valid init option\n", argv[argnum][2]);
return EXIT_FAILURE;
}
break;
case 'c': // Clock divider
clk_div = atoi(argv[argnum]+2);
break;
case 's': // Slave address
slave_address = atoi(argv[argnum]+2);
break;
default:
fprintf(stderr, "%c is not a valid option\n", argv[argnum][1]);
return EXIT_FAILURE;
}
argnum++; // advance the argument number
}
// If command is used for I2C_END or I2C_BEGIN only
if (argnum == argc && init != NO_ACTION) // no further arguments are needed
return EXIT_SUCCESS;
// Get len
if (strspn(argv[argnum], "0123456789") != strlen(argv[argnum])) {
fprintf(stderr, "Invalid number of bytes specified\n");
return EXIT_FAILURE;
}
len = atoi(argv[argnum]);
if (len > MAX_LEN) {
fprintf(stderr, "Invalid number of bytes specified\n");
return EXIT_FAILURE;
}
argnum++; // advance the argument number
xmitnum = argc - argnum; // number of xmit bytes
memset(wbuf, 0, sizeof(wbuf));
for (i = 0; i < xmitnum; i++) {
if (strspn(argv[argnum + i], "0123456789abcdefABCDEFxX") != strlen(argv[argnum + i])) {
fprintf(stderr, "Invalid data: ");
fprintf(stderr, "%d \n", xmitnum);
return EXIT_FAILURE;
}
wbuf[i] = (char)strtoul(argv[argnum + i], NULL, 0);
}
return EXIT_SUCCESS;
}
//*******************************************************************************
// showusage: Print the usage statement and return errcode.
//*******************************************************************************
int showusage(int errcode) {
printf("i2c \n");
printf("Usage: \n");
printf(" i2c [options] len [rcv/xmit bytes]\n");
printf("\n");
printf(" Invoking i2c results in an I2C transfer of a specified\n");
printf(" number of bytes. Additionally, it can be used to set the appropriate\n");
printf(" GPIO pins to their respective I2C configurations or return them\n");
printf(" to GPIO input configuration. Options include the I2C clock frequency,\n");
printf(" initialization option (i2c_begin and i2c_end). i2c must be invoked\n");
printf(" with root privileges.\n");
printf("\n");
printf(" The following are the options, which must be a single letter\n");
printf(" preceded by a '-' and followed by another character.\n");
printf(" -dx where x is 'w' for write and 'r' is for read.\n");
printf(" -ix where x is the I2C init option, b[egin] or e[nd]\n");
printf(" The begin option must be executed before any transfer can happen.\n");
printf(" It may be included with a transfer.\n");
printf(" The end option will return the I2C pins to GPIO inputs.\n");
printf(" It may be included with a transfer.\n");
printf(" -cx where x is the clock divider from 250MHz. Allowed values\n");
printf(" are 150 through 2500.\n");
printf(" Corresponding frequencies are specified in bcm2835.h.\n");
printf("\n");
printf(" len: The number of bytes to be transmitted or received.\n");
printf(" The maximum number of bytes allowed is %d\n", MAX_LEN);
printf("\n");
printf("\n");
printf("\n");
return errcode;
}
char buf[MAX_LEN];
int i;
uint8_t data;
int main(int argc, char **argv) {
printf("Running ... \n");
// parse the command line
if (comparse(argc, argv) == EXIT_FAILURE) return showusage (EXIT_FAILURE);
if (!bcm2835_init())
{
printf("bcm2835_init failed. Are you running as root??\n");
return 1;
}
// I2C begin if specified
if (init == I2C_BEGIN)
{
if (!bcm2835_i2c_begin())
{
printf("bcm2835_i2c_begin failed. Are you running as root??\n");
return 1;
}
}
// If len is 0, no need to continue, but do I2C end if specified
if (len == 0) {
if (init == I2C_END) bcm2835_i2c_end();
printf("... done!\n");
return EXIT_SUCCESS;
}
bcm2835_i2c_setSlaveAddress(slave_address);
bcm2835_i2c_setClockDivider(clk_div);
fprintf(stderr, "Clock divider set to: %d\n", clk_div);
fprintf(stderr, "len set to: %d\n", len);
fprintf(stderr, "Slave address set to: %d\n", slave_address);
if (mode == MODE_READ) {
for (i=0; i<MAX_LEN; i++) buf[i] = 'n';
data = bcm2835_i2c_read(buf, len);
printf("Read Result = %d\n", data);
for (i=0; i<MAX_LEN; i++) {
if(buf[i] != 'n') printf("Read Buf[%d] = %x\n", i, buf[i]);
}
}
if (mode == MODE_WRITE) {
data = bcm2835_i2c_write(wbuf, len);
printf("Write Result = %d\n", data);
}
// This I2C end is done after a transfer if specified
if (init == I2C_END) bcm2835_i2c_end();
bcm2835_close();
printf("... done!\n");
return 0;
}