e-paper-display/bcm2835-1.71/src/bcm2835.c

2244 lines
68 KiB
C
Raw Normal View History

2024-01-31 22:04:09 +00:00
/* bcm2835.c
// C and C++ support for Broadcom BCM 2835 as used in Raspberry Pi
// http://elinux.org/RPi_Low-level_peripherals
// http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
//
// Author: Mike McCauley
// Copyright (C) 2011-2013 Mike McCauley
// $Id: bcm2835.c,v 1.28 2020/01/11 05:07:13 mikem Exp mikem $
*/
// Needed to compile with gcc -std=c99, as reported by John Blaiklock.
#define _POSIX_C_SOURCE 200809L
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/types.h>
#define BCK2835_LIBRARY_BUILD
#include "bcm2835.h"
/* This define enables a little test program (by default a blinking output on pin RPI_GPIO_PIN_11)
// You can do some safe, non-destructive testing on any platform with:
// gcc bcm2835.c -D BCM2835_TEST
// ./a.out
*/
/*#define BCM2835_TEST*/
/* Uncommenting this define compiles alternative I2C code for the version 1 RPi
// The P1 header I2C pins are connected to SDA0 and SCL0 on V1.
// By default I2C code is generated for the V2 RPi which has SDA1 and SCL1 connected.
*/
/* #define I2C_V1*/
/* Physical address and size of the peripherals block
// May be overridden on RPi2
*/
off_t bcm2835_peripherals_base = BCM2835_PERI_BASE;
size_t bcm2835_peripherals_size = BCM2835_PERI_SIZE;
/* Virtual memory address of the mapped peripherals block
*/
uint32_t *bcm2835_peripherals = (uint32_t *)MAP_FAILED;
/* And the register bases within the peripherals block
*/
volatile uint32_t *bcm2835_gpio = (uint32_t *)MAP_FAILED;
volatile uint32_t *bcm2835_pwm = (uint32_t *)MAP_FAILED;
volatile uint32_t *bcm2835_clk = (uint32_t *)MAP_FAILED;
volatile uint32_t *bcm2835_pads = (uint32_t *)MAP_FAILED;
volatile uint32_t *bcm2835_spi0 = (uint32_t *)MAP_FAILED;
volatile uint32_t *bcm2835_bsc0 = (uint32_t *)MAP_FAILED;
volatile uint32_t *bcm2835_bsc1 = (uint32_t *)MAP_FAILED;
volatile uint32_t *bcm2835_st = (uint32_t *)MAP_FAILED;
volatile uint32_t *bcm2835_aux = (uint32_t *)MAP_FAILED;
volatile uint32_t *bcm2835_spi1 = (uint32_t *)MAP_FAILED;
/* BEB*/
volatile uint32_t *bcm2835_smi = (uint32_t *)MAP_FAILED;
/* This variable allows us to test on hardware other than RPi.
// It prevents access to the kernel memory, and does not do any peripheral access
// Instead it prints out what it _would_ do if debug were 0
*/
static uint8_t debug = 0;
/* RPI 4 has different pullup registers - we need to know if we have that type */
static uint8_t pud_type_rpi4 = 0;
/* RPI 4 has different pullup operation - make backwards compat */
static uint8_t pud_compat_setting = BCM2835_GPIO_PUD_OFF;
/* I2C The time needed to transmit one byte. In microseconds.
*/
static int i2c_byte_wait_us = 0;
/* SPI bit order. BCM2835 SPI0 only supports MSBFIRST, so we instead
* have a software based bit reversal, based on a contribution by Damiano Benedetti
*/
static uint8_t bcm2835_spi_bit_order = BCM2835_SPI_BIT_ORDER_MSBFIRST;
static uint8_t bcm2835_byte_reverse_table[] =
{
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff
};
static uint8_t bcm2835_correct_order(uint8_t b)
{
if (bcm2835_spi_bit_order == BCM2835_SPI_BIT_ORDER_LSBFIRST)
return bcm2835_byte_reverse_table[b];
else
return b;
}
#ifdef BCM2835_HAVE_LIBCAP
#include <sys/capability.h>
static int bcm2835_has_capability(cap_value_t capability)
{
int ok = 0;
cap_t cap = cap_get_proc();
if (cap)
{
cap_flag_value_t value;
if (cap_get_flag(cap,capability,CAP_EFFECTIVE,&value) == 0 && value == CAP_SET)
ok = 1;
cap_free(cap);
}
return ok;
}
#endif
/*
// Low level register access functions
*/
/* Function to return the pointers to the hardware register bases */
uint32_t* bcm2835_regbase(uint8_t regbase)
{
switch (regbase)
{
case BCM2835_REGBASE_ST:
return (uint32_t *)bcm2835_st;
case BCM2835_REGBASE_GPIO:
return (uint32_t *)bcm2835_gpio;
case BCM2835_REGBASE_PWM:
return (uint32_t *)bcm2835_pwm;
case BCM2835_REGBASE_CLK:
return (uint32_t *)bcm2835_clk;
case BCM2835_REGBASE_PADS:
return (uint32_t *)bcm2835_pads;
case BCM2835_REGBASE_SPI0:
return (uint32_t *)bcm2835_spi0;
case BCM2835_REGBASE_BSC0:
return (uint32_t *)bcm2835_bsc0;
case BCM2835_REGBASE_BSC1:
return (uint32_t *)bcm2835_st;
case BCM2835_REGBASE_AUX:
return (uint32_t *)bcm2835_aux;
case BCM2835_REGBASE_SPI1:
return (uint32_t *)bcm2835_spi1;
/* BEB */
case BCM2835_REGBASE_SMI:
return (uint32_t *)bcm2835_smi;
}
return (uint32_t *)MAP_FAILED;
}
void bcm2835_set_debug(uint8_t d)
{
debug = d;
}
unsigned int bcm2835_version(void)
{
return BCM2835_VERSION;
}
/* Read with memory barriers from peripheral
*
*/
uint32_t bcm2835_peri_read(volatile uint32_t* paddr)
{
uint32_t ret;
if (debug)
{
printf("bcm2835_peri_read paddr %p\n", (void *) paddr);
return 0;
}
else
{
__sync_synchronize();
ret = *paddr;
__sync_synchronize();
return ret;
}
}
/* read from peripheral without the read barrier
* This can only be used if more reads to THE SAME peripheral
* will follow. The sequence must terminate with memory barrier
* before any read or write to another peripheral can occur.
* The MB can be explicit, or one of the barrier read/write calls.
*/
uint32_t bcm2835_peri_read_nb(volatile uint32_t* paddr)
{
if (debug)
{
printf("bcm2835_peri_read_nb paddr %p\n", paddr);
return 0;
}
else
{
return *paddr;
}
}
/* Write with memory barriers to peripheral
*/
void bcm2835_peri_write(volatile uint32_t* paddr, uint32_t value)
{
if (debug)
{
printf("bcm2835_peri_write paddr %p, value %08X\n", paddr, value);
}
else
{
__sync_synchronize();
*paddr = value;
__sync_synchronize();
}
}
/* write to peripheral without the write barrier */
void bcm2835_peri_write_nb(volatile uint32_t* paddr, uint32_t value)
{
if (debug)
{
printf("bcm2835_peri_write_nb paddr %p, value %08X\n",
paddr, value);
}
else
{
*paddr = value;
}
}
/* Set/clear only the bits in value covered by the mask
* This is not atomic - can be interrupted.
*/
void bcm2835_peri_set_bits(volatile uint32_t* paddr, uint32_t value, uint32_t mask)
{
uint32_t v = bcm2835_peri_read(paddr);
v = (v & ~mask) | (value & mask);
bcm2835_peri_write(paddr, v);
}
/*
// Low level convenience functions
*/
/* Function select
// pin is a BCM2835 GPIO pin number NOT RPi pin number
// There are 6 control registers, each control the functions of a block
// of 10 pins.
// Each control register has 10 sets of 3 bits per GPIO pin:
//
// 000 = GPIO Pin X is an input
// 001 = GPIO Pin X is an output
// 100 = GPIO Pin X takes alternate function 0
// 101 = GPIO Pin X takes alternate function 1
// 110 = GPIO Pin X takes alternate function 2
// 111 = GPIO Pin X takes alternate function 3
// 011 = GPIO Pin X takes alternate function 4
// 010 = GPIO Pin X takes alternate function 5
//
// So the 3 bits for port X are:
// X / 10 + ((X % 10) * 3)
*/
void bcm2835_gpio_fsel(uint8_t pin, uint8_t mode)
{
/* Function selects are 10 pins per 32 bit word, 3 bits per pin */
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPFSEL0/4 + (pin/10);
uint8_t shift = (pin % 10) * 3;
uint32_t mask = BCM2835_GPIO_FSEL_MASK << shift;
uint32_t value = mode << shift;
bcm2835_peri_set_bits(paddr, value, mask);
}
/* Set output pin */
void bcm2835_gpio_set(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPSET0/4 + pin/32;
uint8_t shift = pin % 32;
bcm2835_peri_write(paddr, 1 << shift);
}
/* Clear output pin */
void bcm2835_gpio_clr(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPCLR0/4 + pin/32;
uint8_t shift = pin % 32;
bcm2835_peri_write(paddr, 1 << shift);
}
/* Set all output pins in the mask */
void bcm2835_gpio_set_multi(uint32_t mask)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPSET0/4;
bcm2835_peri_write(paddr, mask);
}
/* Clear all output pins in the mask */
void bcm2835_gpio_clr_multi(uint32_t mask)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPCLR0/4;
bcm2835_peri_write(paddr, mask);
}
/* Read input pin */
uint8_t bcm2835_gpio_lev(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPLEV0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = bcm2835_peri_read(paddr);
return (value & (1 << shift)) ? HIGH : LOW;
}
/* See if an event detection bit is set
// Sigh cant support interrupts yet
*/
uint8_t bcm2835_gpio_eds(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPEDS0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = bcm2835_peri_read(paddr);
return (value & (1 << shift)) ? HIGH : LOW;
}
uint32_t bcm2835_gpio_eds_multi(uint32_t mask)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPEDS0/4;
uint32_t value = bcm2835_peri_read(paddr);
return (value & mask);
}
/* Write a 1 to clear the bit in EDS */
void bcm2835_gpio_set_eds(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPEDS0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_write(paddr, value);
}
void bcm2835_gpio_set_eds_multi(uint32_t mask)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPEDS0/4;
bcm2835_peri_write(paddr, mask);
}
/* Rising edge detect enable */
void bcm2835_gpio_ren(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPREN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_ren(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPREN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
/* Falling edge detect enable */
void bcm2835_gpio_fen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPFEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_fen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPFEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
/* High detect enable */
void bcm2835_gpio_hen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPHEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_hen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPHEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
/* Low detect enable */
void bcm2835_gpio_len(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPLEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_len(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPLEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
/* Async rising edge detect enable */
void bcm2835_gpio_aren(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPAREN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_aren(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPAREN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
/* Async falling edge detect enable */
void bcm2835_gpio_afen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPAFEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_afen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPAFEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
/* Set pullup/down */
void bcm2835_gpio_pud(uint8_t pud)
{
if( pud_type_rpi4 )
{
pud_compat_setting = pud;
}
else {
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPPUD/4;
bcm2835_peri_write(paddr, pud);
}
}
/* Pullup/down clock
// Clocks the value of pud into the GPIO pin
*/
void bcm2835_gpio_pudclk(uint8_t pin, uint8_t on)
{
if( pud_type_rpi4 )
{
if( on )
bcm2835_gpio_set_pud( pin, pud_compat_setting);
}
else
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPPUDCLK0/4 + pin/32;
uint8_t shift = pin % 32;
bcm2835_peri_write(paddr, (on ? 1 : 0) << shift);
}
}
/* Read GPIO pad behaviour for groups of GPIOs */
uint32_t bcm2835_gpio_pad(uint8_t group)
{
if (bcm2835_pads == MAP_FAILED)
return 0;
volatile uint32_t* paddr = bcm2835_pads + BCM2835_PADS_GPIO_0_27/4 + group;
return bcm2835_peri_read(paddr);
}
/* Set GPIO pad behaviour for groups of GPIOs
// powerup value for all pads is
// BCM2835_PAD_SLEW_RATE_UNLIMITED | BCM2835_PAD_HYSTERESIS_ENABLED | BCM2835_PAD_DRIVE_8mA
*/
void bcm2835_gpio_set_pad(uint8_t group, uint32_t control)
{
if (bcm2835_pads == MAP_FAILED)
return;
volatile uint32_t* paddr = bcm2835_pads + BCM2835_PADS_GPIO_0_27/4 + group;
bcm2835_peri_write(paddr, control | BCM2835_PAD_PASSWRD);
}
/* Some convenient arduino-like functions
// milliseconds
*/
void bcm2835_delay(unsigned int millis)
{
struct timespec sleeper;
sleeper.tv_sec = (time_t)(millis / 1000);
sleeper.tv_nsec = (long)(millis % 1000) * 1000000;
nanosleep(&sleeper, NULL);
}
/* microseconds */
void bcm2835_delayMicroseconds(uint64_t micros)
{
struct timespec t1;
uint64_t start;
if (debug)
{
/* Cant access sytem timers in debug mode */
printf("bcm2835_delayMicroseconds %lld\n", (long long int) micros);
return;
}
/* Calling nanosleep() takes at least 100-200 us, so use it for
// long waits and use a busy wait on the System Timer for the rest.
*/
start = bcm2835_st_read();
/* Not allowed to access timer registers (result is not as precise)*/
if (start==0)
{
t1.tv_sec = 0;
t1.tv_nsec = 1000 * (long)(micros);
nanosleep(&t1, NULL);
return;
}
if (micros > 450)
{
t1.tv_sec = 0;
t1.tv_nsec = 1000 * (long)(micros - 200);
nanosleep(&t1, NULL);
}
bcm2835_st_delay(start, micros);
}
/*
// Higher level convenience functions
*/
/* Set the state of an output */
void bcm2835_gpio_write(uint8_t pin, uint8_t on)
{
if (on)
bcm2835_gpio_set(pin);
else
bcm2835_gpio_clr(pin);
}
/* Set the state of a all 32 outputs in the mask to on or off */
void bcm2835_gpio_write_multi(uint32_t mask, uint8_t on)
{
if (on)
bcm2835_gpio_set_multi(mask);
else
bcm2835_gpio_clr_multi(mask);
}
/* Set the state of a all 32 outputs in the mask to the values in value */
void bcm2835_gpio_write_mask(uint32_t value, uint32_t mask)
{
bcm2835_gpio_set_multi(value & mask);
bcm2835_gpio_clr_multi((~value) & mask);
}
/* Set the pullup/down resistor for a pin
//
// The GPIO Pull-up/down Clock Registers control the actuation of internal pull-downs on
// the respective GPIO pins. These registers must be used in conjunction with the GPPUD
// register to effect GPIO Pull-up/down changes. The following sequence of events is
// required:
// 1. Write to GPPUD to set the required control signal (i.e. Pull-up or Pull-Down or neither
// to remove the current Pull-up/down)
// 2. Wait 150 cycles ? this provides the required set-up time for the control signal
// 3. Write to GPPUDCLK0/1 to clock the control signal into the GPIO pads you wish to
// modify ? NOTE only the pads which receive a clock will be modified, all others will
// retain their previous state.
// 4. Wait 150 cycles ? this provides the required hold time for the control signal
// 5. Write to GPPUD to remove the control signal
// 6. Write to GPPUDCLK0/1 to remove the clock
//
// RPi has P1-03 and P1-05 with 1k8 pullup resistor
//
// RPI 4 uses a different PUD method - no clock
*/
void bcm2835_gpio_set_pud(uint8_t pin, uint8_t pud)
{
if( pud_type_rpi4 )
{
int shiftbits = (pin & 0xf) << 1;
uint32_t bits;
uint32_t pull;
switch (pud)
{
case BCM2835_GPIO_PUD_OFF: pull = 0; break;
case BCM2835_GPIO_PUD_UP: pull = 1; break;
case BCM2835_GPIO_PUD_DOWN: pull = 2; break;
default: return;
}
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPPUPPDN0/4 + (pin >> 4);
bits = bcm2835_peri_read_nb( paddr );
bits &= ~(3 << shiftbits);
bits |= (pull << shiftbits);
bcm2835_peri_write_nb( paddr, bits );
} else
{
bcm2835_gpio_pud(pud);
delayMicroseconds(10);
bcm2835_gpio_pudclk(pin, 1);
delayMicroseconds(10);
bcm2835_gpio_pud(BCM2835_GPIO_PUD_OFF);
bcm2835_gpio_pudclk(pin, 0);
}
}
uint8_t bcm2835_gpio_get_pud(uint8_t pin)
{
uint8_t ret = BCM2835_GPIO_PUD_ERROR;
if( pud_type_rpi4 )
{
uint32_t bits;
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPPUPPDN0/4 + (pin >> 4);
bits = (bcm2835_peri_read_nb( paddr ) >> ((pin & 0xf)<<1)) & 0x3;
switch (bits)
{
case 0: ret = BCM2835_GPIO_PUD_OFF; break;
case 1: ret = BCM2835_GPIO_PUD_UP; break;
case 2: ret = BCM2835_GPIO_PUD_DOWN; break;
default: ret = BCM2835_GPIO_PUD_ERROR;
}
}
return ret;
}
static void bcm2835_aux_spi_reset(void)
{
volatile uint32_t* cntl0 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL0/4;
volatile uint32_t* cntl1 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL1/4;
bcm2835_peri_write(cntl1, 0);
bcm2835_peri_write(cntl0, BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
}
int bcm2835_spi_begin(void)
{
volatile uint32_t* paddr;
if (bcm2835_spi0 == MAP_FAILED)
return 0; /* bcm2835_init() failed, or not root */
/* Set the SPI0 pins to the Alt 0 function to enable SPI0 access on them */
bcm2835_gpio_fsel(RPI_GPIO_P1_26, BCM2835_GPIO_FSEL_ALT0); /* CE1 */
bcm2835_gpio_fsel(RPI_GPIO_P1_24, BCM2835_GPIO_FSEL_ALT0); /* CE0 */
bcm2835_gpio_fsel(RPI_GPIO_P1_21, BCM2835_GPIO_FSEL_ALT0); /* MISO */
bcm2835_gpio_fsel(RPI_GPIO_P1_19, BCM2835_GPIO_FSEL_ALT0); /* MOSI */
bcm2835_gpio_fsel(RPI_GPIO_P1_23, BCM2835_GPIO_FSEL_ALT0); /* CLK */
/* Set the SPI CS register to the some sensible defaults */
paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
bcm2835_peri_write(paddr, 0); /* All 0s */
/* Clear TX and RX fifos */
bcm2835_peri_write_nb(paddr, BCM2835_SPI0_CS_CLEAR);
return 1; // OK
}
void bcm2835_spi_end(void)
{
/* Set all the SPI0 pins back to input */
bcm2835_gpio_fsel(RPI_GPIO_P1_26, BCM2835_GPIO_FSEL_INPT); /* CE1 */
bcm2835_gpio_fsel(RPI_GPIO_P1_24, BCM2835_GPIO_FSEL_INPT); /* CE0 */
bcm2835_gpio_fsel(RPI_GPIO_P1_21, BCM2835_GPIO_FSEL_INPT); /* MISO */
bcm2835_gpio_fsel(RPI_GPIO_P1_19, BCM2835_GPIO_FSEL_INPT); /* MOSI */
bcm2835_gpio_fsel(RPI_GPIO_P1_23, BCM2835_GPIO_FSEL_INPT); /* CLK */
}
void bcm2835_spi_setBitOrder(uint8_t order)
{
bcm2835_spi_bit_order = order;
}
/* defaults to 0, which means a divider of 65536.
// The divisor must be a power of 2. Odd numbers
// rounded down. The maximum SPI clock rate is
// of the APB clock
*/
void bcm2835_spi_setClockDivider(uint16_t divider)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CLK/4;
bcm2835_peri_write(paddr, divider);
}
void bcm2835_spi_set_speed_hz(uint32_t speed_hz)
{
uint16_t divider = (uint16_t) ((uint32_t) BCM2835_CORE_CLK_HZ / speed_hz);
divider &= 0xFFFE;
bcm2835_spi_setClockDivider(divider);
}
void bcm2835_spi_setDataMode(uint8_t mode)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
/* Mask in the CPO and CPHA bits of CS */
bcm2835_peri_set_bits(paddr, mode << 2, BCM2835_SPI0_CS_CPOL | BCM2835_SPI0_CS_CPHA);
}
/* Writes (and reads) a single byte to SPI */
uint8_t bcm2835_spi_transfer(uint8_t value)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
volatile uint32_t* fifo = bcm2835_spi0 + BCM2835_SPI0_FIFO/4;
uint32_t ret;
/* This is Polled transfer as per section 10.6.1
// BUG ALERT: what happens if we get interupted in this section, and someone else
// accesses a different peripheral?
// Clear TX and RX fifos
*/
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_CLEAR, BCM2835_SPI0_CS_CLEAR);
/* Set TA = 1 */
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_TA, BCM2835_SPI0_CS_TA);
/* Maybe wait for TXD */
while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_TXD))
;
/* Write to FIFO, no barrier */
bcm2835_peri_write_nb(fifo, bcm2835_correct_order(value));
/* Wait for DONE to be set */
while (!(bcm2835_peri_read_nb(paddr) & BCM2835_SPI0_CS_DONE))
;
/* Read any byte that was sent back by the slave while we sere sending to it */
ret = bcm2835_correct_order(bcm2835_peri_read_nb(fifo));
/* Set TA = 0, and also set the barrier */
bcm2835_peri_set_bits(paddr, 0, BCM2835_SPI0_CS_TA);
return ret;
}
/* Writes (and reads) an number of bytes to SPI */
void bcm2835_spi_transfernb(char* tbuf, char* rbuf, uint32_t len)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
volatile uint32_t* fifo = bcm2835_spi0 + BCM2835_SPI0_FIFO/4;
uint32_t TXCnt=0;
uint32_t RXCnt=0;
/* This is Polled transfer as per section 10.6.1
// BUG ALERT: what happens if we get interupted in this section, and someone else
// accesses a different peripheral?
*/
/* Clear TX and RX fifos */
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_CLEAR, BCM2835_SPI0_CS_CLEAR);
/* Set TA = 1 */
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_TA, BCM2835_SPI0_CS_TA);
/* Use the FIFO's to reduce the interbyte times */
while((TXCnt < len)||(RXCnt < len))
{
/* TX fifo not full, so add some more bytes */
while(((bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_TXD))&&(TXCnt < len ))
{
bcm2835_peri_write_nb(fifo, bcm2835_correct_order(tbuf[TXCnt]));
TXCnt++;
}
/* Rx fifo not empty, so get the next received bytes */
while(((bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_RXD))&&( RXCnt < len ))
{
rbuf[RXCnt] = bcm2835_correct_order(bcm2835_peri_read_nb(fifo));
RXCnt++;
}
}
/* Wait for DONE to be set */
while (!(bcm2835_peri_read_nb(paddr) & BCM2835_SPI0_CS_DONE))
;
/* Set TA = 0, and also set the barrier */
bcm2835_peri_set_bits(paddr, 0, BCM2835_SPI0_CS_TA);
}
/* Writes an number of bytes to SPI */
void bcm2835_spi_writenb(const char* tbuf, uint32_t len)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
volatile uint32_t* fifo = bcm2835_spi0 + BCM2835_SPI0_FIFO/4;
uint32_t i;
/* This is Polled transfer as per section 10.6.1
// BUG ALERT: what happens if we get interupted in this section, and someone else
// accesses a different peripheral?
// Answer: an ISR is required to issue the required memory barriers.
*/
/* Clear TX and RX fifos */
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_CLEAR, BCM2835_SPI0_CS_CLEAR);
/* Set TA = 1 */
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_TA, BCM2835_SPI0_CS_TA);
for (i = 0; i < len; i++)
{
/* Maybe wait for TXD */
while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_TXD))
;
/* Write to FIFO, no barrier */
bcm2835_peri_write_nb(fifo, bcm2835_correct_order(tbuf[i]));
/* Read from FIFO to prevent stalling */
while (bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_RXD)
(void) bcm2835_peri_read_nb(fifo);
}
/* Wait for DONE to be set */
while (!(bcm2835_peri_read_nb(paddr) & BCM2835_SPI0_CS_DONE)) {
while (bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_RXD)
(void) bcm2835_peri_read_nb(fifo);
};
/* Set TA = 0, and also set the barrier */
bcm2835_peri_set_bits(paddr, 0, BCM2835_SPI0_CS_TA);
}
/* Writes (and reads) an number of bytes to SPI
// Read bytes are copied over onto the transmit buffer
*/
void bcm2835_spi_transfern(char* buf, uint32_t len)
{
bcm2835_spi_transfernb(buf, buf, len);
}
void bcm2835_spi_chipSelect(uint8_t cs)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
/* Mask in the CS bits of CS */
bcm2835_peri_set_bits(paddr, cs, BCM2835_SPI0_CS_CS);
}
void bcm2835_spi_setChipSelectPolarity(uint8_t cs, uint8_t active)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
uint8_t shift = 21 + cs;
/* Mask in the appropriate CSPOLn bit */
bcm2835_peri_set_bits(paddr, active << shift, 1 << shift);
}
void bcm2835_spi_write(uint16_t data)
{
#if 0
char buf[2];
buf[0] = data >> 8;
buf[1] = data & 0xFF;
bcm2835_spi_transfern(buf, 2);
#else
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
volatile uint32_t* fifo = bcm2835_spi0 + BCM2835_SPI0_FIFO/4;
/* Clear TX and RX fifos */
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_CLEAR, BCM2835_SPI0_CS_CLEAR);
/* Set TA = 1 */
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_TA, BCM2835_SPI0_CS_TA);
/* Maybe wait for TXD */
while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_TXD))
;
/* Write to FIFO */
bcm2835_peri_write_nb(fifo, (uint32_t) data >> 8);
bcm2835_peri_write_nb(fifo, data & 0xFF);
/* Wait for DONE to be set */
while (!(bcm2835_peri_read_nb(paddr) & BCM2835_SPI0_CS_DONE))
;
/* Set TA = 0, and also set the barrier */
bcm2835_peri_set_bits(paddr, 0, BCM2835_SPI0_CS_TA);
#endif
}
int bcm2835_aux_spi_begin(void)
{
volatile uint32_t* enable = bcm2835_aux + BCM2835_AUX_ENABLE/4;
volatile uint32_t* cntl0 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL0/4;
volatile uint32_t* cntl1 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL1/4;
if (bcm2835_spi1 == MAP_FAILED)
return 0; /* bcm2835_init() failed, or not root */
/* Set the SPI pins to the Alt 4 function to enable SPI1 access on them */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_36, BCM2835_GPIO_FSEL_ALT4); /* SPI1_CE2_N */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_35, BCM2835_GPIO_FSEL_ALT4); /* SPI1_MISO */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_38, BCM2835_GPIO_FSEL_ALT4); /* SPI1_MOSI */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_40, BCM2835_GPIO_FSEL_ALT4); /* SPI1_SCLK */
bcm2835_aux_spi_setClockDivider(bcm2835_aux_spi_CalcClockDivider(1000000)); // Default 1MHz SPI
bcm2835_peri_write(enable, BCM2835_AUX_ENABLE_SPI0);
bcm2835_peri_write(cntl1, 0);
bcm2835_peri_write(cntl0, BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
return 1; /* OK */
}
void bcm2835_aux_spi_end(void)
{
/* Set all the SPI1 pins back to input */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_36, BCM2835_GPIO_FSEL_INPT); /* SPI1_CE2_N */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_35, BCM2835_GPIO_FSEL_INPT); /* SPI1_MISO */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_38, BCM2835_GPIO_FSEL_INPT); /* SPI1_MOSI */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_40, BCM2835_GPIO_FSEL_INPT); /* SPI1_SCLK */
}
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
uint16_t bcm2835_aux_spi_CalcClockDivider(uint32_t speed_hz)
{
uint16_t divider;
if (speed_hz < (uint32_t) BCM2835_AUX_SPI_CLOCK_MIN) {
speed_hz = (uint32_t) BCM2835_AUX_SPI_CLOCK_MIN;
} else if (speed_hz > (uint32_t) BCM2835_AUX_SPI_CLOCK_MAX) {
speed_hz = (uint32_t) BCM2835_AUX_SPI_CLOCK_MAX;
}
divider = (uint16_t) DIV_ROUND_UP(BCM2835_CORE_CLK_HZ, 2 * speed_hz) - 1;
if (divider > (uint16_t) BCM2835_AUX_SPI_CNTL0_SPEED_MAX) {
return (uint16_t) BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
}
return divider;
}
static uint32_t spi1_speed;
void bcm2835_aux_spi_setClockDivider(uint16_t divider)
{
spi1_speed = (uint32_t) divider;
}
void bcm2835_aux_spi_write(uint16_t data)
{
volatile uint32_t* cntl0 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL0/4;
volatile uint32_t* cntl1 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL1/4;
volatile uint32_t* stat = bcm2835_spi1 + BCM2835_AUX_SPI_STAT/4;
volatile uint32_t* io = bcm2835_spi1 + BCM2835_AUX_SPI_IO/4;
uint32_t _cntl0 = (spi1_speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT);
_cntl0 |= BCM2835_AUX_SPI_CNTL0_CS2_N;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_ENABLE;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
_cntl0 |= 16; // Shift length
bcm2835_peri_write(cntl0, _cntl0);
bcm2835_peri_write(cntl1, BCM2835_AUX_SPI_CNTL1_MSBF_IN);
while (bcm2835_peri_read(stat) & BCM2835_AUX_SPI_STAT_TX_FULL)
;
bcm2835_peri_write(io, (uint32_t) data << 16);
}
void bcm2835_aux_spi_writenb(const char *tbuf, uint32_t len) {
volatile uint32_t* cntl0 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL0/4;
volatile uint32_t* cntl1 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL1/4;
volatile uint32_t* stat = bcm2835_spi1 + BCM2835_AUX_SPI_STAT/4;
volatile uint32_t* txhold = bcm2835_spi1 + BCM2835_AUX_SPI_TXHOLD/4;
volatile uint32_t* io = bcm2835_spi1 + BCM2835_AUX_SPI_IO/4;
char *tx = (char *) tbuf;
uint32_t tx_len = len;
uint32_t count;
uint32_t data;
uint32_t i;
uint8_t byte;
uint32_t _cntl0 = (spi1_speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT);
_cntl0 |= BCM2835_AUX_SPI_CNTL0_CS2_N;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_ENABLE;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_VAR_WIDTH;
bcm2835_peri_write(cntl0, _cntl0);
bcm2835_peri_write(cntl1, BCM2835_AUX_SPI_CNTL1_MSBF_IN);
while (tx_len > 0) {
while (bcm2835_peri_read(stat) & BCM2835_AUX_SPI_STAT_TX_FULL)
;
count = MIN(tx_len, 3);
data = 0;
for (i = 0; i < count; i++) {
byte = (tx != NULL) ? (uint8_t) *tx++ : (uint8_t) 0;
data |= byte << (8 * (2 - i));
}
data |= (count * 8) << 24;
tx_len -= count;
if (tx_len != 0) {
bcm2835_peri_write(txhold, data);
} else {
bcm2835_peri_write(io, data);
}
while (bcm2835_peri_read(stat) & BCM2835_AUX_SPI_STAT_BUSY)
;
(void) bcm2835_peri_read(io);
}
}
void bcm2835_aux_spi_transfernb(const char *tbuf, char *rbuf, uint32_t len) {
volatile uint32_t* cntl0 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL0/4;
volatile uint32_t* cntl1 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL1/4;
volatile uint32_t* stat = bcm2835_spi1 + BCM2835_AUX_SPI_STAT/4;
volatile uint32_t* txhold = bcm2835_spi1 + BCM2835_AUX_SPI_TXHOLD/4;
volatile uint32_t* io = bcm2835_spi1 + BCM2835_AUX_SPI_IO/4;
char *tx = (char *)tbuf;
char *rx = (char *)rbuf;
uint32_t tx_len = len;
uint32_t rx_len = len;
uint32_t count;
uint32_t data;
uint32_t i;
uint8_t byte;
uint32_t _cntl0 = (spi1_speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT);
_cntl0 |= BCM2835_AUX_SPI_CNTL0_CS2_N;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_ENABLE;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_VAR_WIDTH;
bcm2835_peri_write(cntl0, _cntl0);
bcm2835_peri_write(cntl1, BCM2835_AUX_SPI_CNTL1_MSBF_IN);
while ((tx_len > 0) || (rx_len > 0)) {
while (!(bcm2835_peri_read(stat) & BCM2835_AUX_SPI_STAT_TX_FULL) && (tx_len > 0)) {
count = MIN(tx_len, 3);
data = 0;
for (i = 0; i < count; i++) {
byte = (tx != NULL) ? (uint8_t) *tx++ : (uint8_t) 0;
data |= byte << (8 * (2 - i));
}
data |= (count * 8) << 24;
tx_len -= count;
if (tx_len != 0) {
bcm2835_peri_write(txhold, data);
} else {
bcm2835_peri_write(io, data);
}
}
while (!(bcm2835_peri_read(stat) & BCM2835_AUX_SPI_STAT_RX_EMPTY) && (rx_len > 0)) {
count = MIN(rx_len, 3);
data = bcm2835_peri_read(io);
if (rbuf != NULL) {
switch (count) {
case 3:
*rx++ = (char)((data >> 16) & 0xFF);
/*@fallthrough@*/
/* no break */
case 2:
*rx++ = (char)((data >> 8) & 0xFF);
/*@fallthrough@*/
/* no break */
case 1:
*rx++ = (char)((data >> 0) & 0xFF);
}
}
rx_len -= count;
}
while (!(bcm2835_peri_read(stat) & BCM2835_AUX_SPI_STAT_BUSY) && (rx_len > 0)) {
count = MIN(rx_len, 3);
data = bcm2835_peri_read(io);
if (rbuf != NULL) {
switch (count) {
case 3:
*rx++ = (char)((data >> 16) & 0xFF);
/*@fallthrough@*/
/* no break */
case 2:
*rx++ = (char)((data >> 8) & 0xFF);
/*@fallthrough@*/
/* no break */
case 1:
*rx++ = (char)((data >> 0) & 0xFF);
}
}
rx_len -= count;
}
}
}
void bcm2835_aux_spi_transfern(char *buf, uint32_t len) {
bcm2835_aux_spi_transfernb(buf, buf, len);
}
/* Writes (and reads) a single byte to AUX SPI */
uint8_t bcm2835_aux_spi_transfer(uint8_t value)
{
volatile uint32_t* cntl0 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL0/4;
volatile uint32_t* cntl1 = bcm2835_spi1 + BCM2835_AUX_SPI_CNTL1/4;
volatile uint32_t* stat = bcm2835_spi1 + BCM2835_AUX_SPI_STAT/4;
volatile uint32_t* io = bcm2835_spi1 + BCM2835_AUX_SPI_IO/4;
uint32_t data;
uint32_t _cntl0 = (spi1_speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT);
_cntl0 |= BCM2835_AUX_SPI_CNTL0_CS2_N;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_ENABLE;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
_cntl0 |= BCM2835_AUX_SPI_CNTL0_CPHA_IN;
_cntl0 |= 8; // Shift length.
uint32_t _cntl1 = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
bcm2835_peri_write(cntl1, _cntl1);
bcm2835_peri_write(cntl0, _cntl0);
bcm2835_peri_write(io, (uint32_t) bcm2835_correct_order(value) << 24);
while (bcm2835_peri_read(stat) & BCM2835_AUX_SPI_STAT_BUSY)
;
data = bcm2835_correct_order(bcm2835_peri_read(io) & 0xff);
bcm2835_aux_spi_reset();
return data;
}
int bcm2835_i2c_begin(void)
{
uint16_t cdiv;
if ( bcm2835_bsc0 == MAP_FAILED
|| bcm2835_bsc1 == MAP_FAILED)
return 0; /* bcm2835_init() failed, or not root */
#ifdef I2C_V1
volatile uint32_t* paddr = bcm2835_bsc0 + BCM2835_BSC_DIV/4;
/* Set the I2C/BSC0 pins to the Alt 0 function to enable I2C access on them */
bcm2835_gpio_fsel(RPI_GPIO_P1_03, BCM2835_GPIO_FSEL_ALT0); /* SDA */
bcm2835_gpio_fsel(RPI_GPIO_P1_05, BCM2835_GPIO_FSEL_ALT0); /* SCL */
#else
volatile uint32_t* paddr = bcm2835_bsc1 + BCM2835_BSC_DIV/4;
/* Set the I2C/BSC1 pins to the Alt 0 function to enable I2C access on them */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_03, BCM2835_GPIO_FSEL_ALT0); /* SDA */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_05, BCM2835_GPIO_FSEL_ALT0); /* SCL */
#endif
/* Read the clock divider register */
cdiv = bcm2835_peri_read(paddr);
/* Calculate time for transmitting one byte
// 1000000 = micros seconds in a second
// 9 = Clocks per byte : 8 bits + ACK
*/
i2c_byte_wait_us = ((float)cdiv / BCM2835_CORE_CLK_HZ) * 1000000 * 9;
return 1;
}
void bcm2835_i2c_end(void)
{
#ifdef I2C_V1
/* Set all the I2C/BSC0 pins back to input */
bcm2835_gpio_fsel(RPI_GPIO_P1_03, BCM2835_GPIO_FSEL_INPT); /* SDA */
bcm2835_gpio_fsel(RPI_GPIO_P1_05, BCM2835_GPIO_FSEL_INPT); /* SCL */
#else
/* Set all the I2C/BSC1 pins back to input */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_03, BCM2835_GPIO_FSEL_INPT); /* SDA */
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_05, BCM2835_GPIO_FSEL_INPT); /* SCL */
#endif
}
void bcm2835_i2c_setSlaveAddress(uint8_t addr)
{
/* Set I2C Device Address */
#ifdef I2C_V1
volatile uint32_t* paddr = bcm2835_bsc0 + BCM2835_BSC_A/4;
#else
volatile uint32_t* paddr = bcm2835_bsc1 + BCM2835_BSC_A/4;
#endif
bcm2835_peri_write(paddr, addr);
}
/* defaults to 0x5dc, should result in a 166.666 kHz I2C clock frequency.
// The divisor must be a power of 2. Odd numbers
// rounded down.
*/
void bcm2835_i2c_setClockDivider(uint16_t divider)
{
#ifdef I2C_V1
volatile uint32_t* paddr = bcm2835_bsc0 + BCM2835_BSC_DIV/4;
#else
volatile uint32_t* paddr = bcm2835_bsc1 + BCM2835_BSC_DIV/4;
#endif
bcm2835_peri_write(paddr, divider);
/* Calculate time for transmitting one byte
// 1000000 = micros seconds in a second
// 9 = Clocks per byte : 8 bits + ACK
*/
i2c_byte_wait_us = ((float)divider / BCM2835_CORE_CLK_HZ) * 1000000 * 9;
}
/* set I2C clock divider by means of a baudrate number */
void bcm2835_i2c_set_baudrate(uint32_t baudrate)
{
uint32_t divider;
/* use 0xFFFE mask to limit a max value and round down any odd number */
divider = (BCM2835_CORE_CLK_HZ / baudrate) & 0xFFFE;
bcm2835_i2c_setClockDivider( (uint16_t)divider );
}
/* Writes an number of bytes to I2C */
uint8_t bcm2835_i2c_write(const char * buf, uint32_t len)
{
#ifdef I2C_V1
volatile uint32_t* dlen = bcm2835_bsc0 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc0 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc0 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc0 + BCM2835_BSC_C/4;
#else
volatile uint32_t* dlen = bcm2835_bsc1 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc1 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc1 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc1 + BCM2835_BSC_C/4;
#endif
uint32_t remaining = len;
uint32_t i = 0;
uint8_t reason = BCM2835_I2C_REASON_OK;
/* Clear FIFO */
bcm2835_peri_set_bits(control, BCM2835_BSC_C_CLEAR_1 , BCM2835_BSC_C_CLEAR_1 );
/* Clear Status */
bcm2835_peri_write(status, BCM2835_BSC_S_CLKT | BCM2835_BSC_S_ERR | BCM2835_BSC_S_DONE);
/* Set Data Length */
bcm2835_peri_write(dlen, len);
/* pre populate FIFO with max buffer */
while( remaining && ( i < BCM2835_BSC_FIFO_SIZE ) )
{
bcm2835_peri_write_nb(fifo, buf[i]);
i++;
remaining--;
}
/* Enable device and start transfer */
bcm2835_peri_write(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST);
/* Transfer is over when BCM2835_BSC_S_DONE */
while(!(bcm2835_peri_read(status) & BCM2835_BSC_S_DONE ))
{
while ( remaining && (bcm2835_peri_read(status) & BCM2835_BSC_S_TXD ))
{
/* Write to FIFO */
bcm2835_peri_write(fifo, buf[i]);
i++;
remaining--;
}
}
/* Received a NACK */
if (bcm2835_peri_read(status) & BCM2835_BSC_S_ERR)
{
reason = BCM2835_I2C_REASON_ERROR_NACK;
}
/* Received Clock Stretch Timeout */
else if (bcm2835_peri_read(status) & BCM2835_BSC_S_CLKT)
{
reason = BCM2835_I2C_REASON_ERROR_CLKT;
}
/* Not all data is sent */
else if (remaining)
{
reason = BCM2835_I2C_REASON_ERROR_DATA;
}
bcm2835_peri_set_bits(control, BCM2835_BSC_S_DONE , BCM2835_BSC_S_DONE);
return reason;
}
/* Read an number of bytes from I2C */
uint8_t bcm2835_i2c_read(char* buf, uint32_t len)
{
#ifdef I2C_V1
volatile uint32_t* dlen = bcm2835_bsc0 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc0 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc0 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc0 + BCM2835_BSC_C/4;
#else
volatile uint32_t* dlen = bcm2835_bsc1 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc1 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc1 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc1 + BCM2835_BSC_C/4;
#endif
uint32_t remaining = len;
uint32_t i = 0;
uint8_t reason = BCM2835_I2C_REASON_OK;
/* Clear FIFO */
bcm2835_peri_set_bits(control, BCM2835_BSC_C_CLEAR_1 , BCM2835_BSC_C_CLEAR_1 );
/* Clear Status */
bcm2835_peri_write_nb(status, BCM2835_BSC_S_CLKT | BCM2835_BSC_S_ERR | BCM2835_BSC_S_DONE);
/* Set Data Length */
bcm2835_peri_write_nb(dlen, len);
/* Start read */
bcm2835_peri_write_nb(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST | BCM2835_BSC_C_READ);
/* wait for transfer to complete */
while (!(bcm2835_peri_read_nb(status) & BCM2835_BSC_S_DONE))
{
/* we must empty the FIFO as it is populated and not use any delay */
while (remaining && bcm2835_peri_read_nb(status) & BCM2835_BSC_S_RXD)
{
/* Read from FIFO, no barrier */
buf[i] = bcm2835_peri_read_nb(fifo);
i++;
remaining--;
}
}
/* transfer has finished - grab any remaining stuff in FIFO */
while (remaining && (bcm2835_peri_read_nb(status) & BCM2835_BSC_S_RXD))
{
/* Read from FIFO, no barrier */
buf[i] = bcm2835_peri_read_nb(fifo);
i++;
remaining--;
}
/* Received a NACK */
if (bcm2835_peri_read(status) & BCM2835_BSC_S_ERR)
{
reason = BCM2835_I2C_REASON_ERROR_NACK;
}
/* Received Clock Stretch Timeout */
else if (bcm2835_peri_read(status) & BCM2835_BSC_S_CLKT)
{
reason = BCM2835_I2C_REASON_ERROR_CLKT;
}
/* Not all data is received */
else if (remaining)
{
reason = BCM2835_I2C_REASON_ERROR_DATA;
}
bcm2835_peri_set_bits(status, BCM2835_BSC_S_DONE , BCM2835_BSC_S_DONE);
return reason;
}
/* Read an number of bytes from I2C sending a repeated start after writing
// the required register. Only works if your device supports this mode
*/
uint8_t bcm2835_i2c_read_register_rs(char* regaddr, char* buf, uint32_t len)
{
#ifdef I2C_V1
volatile uint32_t* dlen = bcm2835_bsc0 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc0 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc0 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc0 + BCM2835_BSC_C/4;
#else
volatile uint32_t* dlen = bcm2835_bsc1 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc1 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc1 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc1 + BCM2835_BSC_C/4;
#endif
uint32_t remaining = len;
uint32_t i = 0;
uint8_t reason = BCM2835_I2C_REASON_OK;
/* Clear FIFO */
bcm2835_peri_set_bits(control, BCM2835_BSC_C_CLEAR_1 , BCM2835_BSC_C_CLEAR_1 );
/* Clear Status */
bcm2835_peri_write(status, BCM2835_BSC_S_CLKT | BCM2835_BSC_S_ERR | BCM2835_BSC_S_DONE);
/* Set Data Length */
bcm2835_peri_write(dlen, 1);
/* Enable device and start transfer */
bcm2835_peri_write(control, BCM2835_BSC_C_I2CEN);
bcm2835_peri_write(fifo, regaddr[0]);
bcm2835_peri_write(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST);
/* poll for transfer has started */
while ( !( bcm2835_peri_read(status) & BCM2835_BSC_S_TA ) )
{
/* Linux may cause us to miss entire transfer stage */
if(bcm2835_peri_read(status) & BCM2835_BSC_S_DONE)
break;
}
/* Send a repeated start with read bit set in address */
bcm2835_peri_write(dlen, len);
bcm2835_peri_write(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST | BCM2835_BSC_C_READ );
/* Wait for write to complete and first byte back. */
bcm2835_delayMicroseconds(i2c_byte_wait_us * 3);
/* wait for transfer to complete */
while (!(bcm2835_peri_read(status) & BCM2835_BSC_S_DONE))
{
/* we must empty the FIFO as it is populated and not use any delay */
while (remaining && bcm2835_peri_read(status) & BCM2835_BSC_S_RXD)
{
/* Read from FIFO */
buf[i] = bcm2835_peri_read(fifo);
i++;
remaining--;
}
}
/* transfer has finished - grab any remaining stuff in FIFO */
while (remaining && (bcm2835_peri_read(status) & BCM2835_BSC_S_RXD))
{
/* Read from FIFO */
buf[i] = bcm2835_peri_read(fifo);
i++;
remaining--;
}
/* Received a NACK */
if (bcm2835_peri_read(status) & BCM2835_BSC_S_ERR)
{
reason = BCM2835_I2C_REASON_ERROR_NACK;
}
/* Received Clock Stretch Timeout */
else if (bcm2835_peri_read(status) & BCM2835_BSC_S_CLKT)
{
reason = BCM2835_I2C_REASON_ERROR_CLKT;
}
/* Not all data is sent */
else if (remaining)
{
reason = BCM2835_I2C_REASON_ERROR_DATA;
}
bcm2835_peri_set_bits(control, BCM2835_BSC_S_DONE , BCM2835_BSC_S_DONE);
return reason;
}
/* Sending an arbitrary number of bytes before issuing a repeated start
// (with no prior stop) and reading a response. Some devices require this behavior.
*/
uint8_t bcm2835_i2c_write_read_rs(char* cmds, uint32_t cmds_len, char* buf, uint32_t buf_len)
{
#ifdef I2C_V1
volatile uint32_t* dlen = bcm2835_bsc0 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc0 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc0 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc0 + BCM2835_BSC_C/4;
#else
volatile uint32_t* dlen = bcm2835_bsc1 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc1 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc1 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc1 + BCM2835_BSC_C/4;
#endif
uint32_t remaining = cmds_len;
uint32_t i = 0;
uint8_t reason = BCM2835_I2C_REASON_OK;
/* Clear FIFO */
bcm2835_peri_set_bits(control, BCM2835_BSC_C_CLEAR_1 , BCM2835_BSC_C_CLEAR_1 );
/* Clear Status */
bcm2835_peri_write(status, BCM2835_BSC_S_CLKT | BCM2835_BSC_S_ERR | BCM2835_BSC_S_DONE);
/* Set Data Length */
bcm2835_peri_write(dlen, cmds_len);
/* pre populate FIFO with max buffer */
while( remaining && ( i < BCM2835_BSC_FIFO_SIZE ) )
{
bcm2835_peri_write_nb(fifo, cmds[i]);
i++;
remaining--;
}
/* Enable device and start transfer */
bcm2835_peri_write(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST);
/* poll for transfer has started (way to do repeated start, from BCM2835 datasheet) */
while ( !( bcm2835_peri_read(status) & BCM2835_BSC_S_TA ) )
{
/* Linux may cause us to miss entire transfer stage */
if(bcm2835_peri_read_nb(status) & BCM2835_BSC_S_DONE)
break;
}
remaining = buf_len;
i = 0;
/* Send a repeated start with read bit set in address */
bcm2835_peri_write(dlen, buf_len);
bcm2835_peri_write(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST | BCM2835_BSC_C_READ );
/* Wait for write to complete and first byte back. */
bcm2835_delayMicroseconds(i2c_byte_wait_us * (cmds_len + 1));
/* wait for transfer to complete */
while (!(bcm2835_peri_read_nb(status) & BCM2835_BSC_S_DONE))
{
/* we must empty the FIFO as it is populated and not use any delay */
while (remaining && bcm2835_peri_read(status) & BCM2835_BSC_S_RXD)
{
/* Read from FIFO, no barrier */
buf[i] = bcm2835_peri_read_nb(fifo);
i++;
remaining--;
}
}
/* transfer has finished - grab any remaining stuff in FIFO */
while (remaining && (bcm2835_peri_read(status) & BCM2835_BSC_S_RXD))
{
/* Read from FIFO */
buf[i] = bcm2835_peri_read(fifo);
i++;
remaining--;
}
/* Received a NACK */
if (bcm2835_peri_read(status) & BCM2835_BSC_S_ERR)
{
reason = BCM2835_I2C_REASON_ERROR_NACK;
}
/* Received Clock Stretch Timeout */
else if (bcm2835_peri_read(status) & BCM2835_BSC_S_CLKT)
{
reason = BCM2835_I2C_REASON_ERROR_CLKT;
}
/* Not all data is sent */
else if (remaining)
{
reason = BCM2835_I2C_REASON_ERROR_DATA;
}
bcm2835_peri_set_bits(control, BCM2835_BSC_S_DONE , BCM2835_BSC_S_DONE);
return reason;
}
/* SMI support courtesy Benoit Bouchez */
int bcm2835_smi_begin(void)
{
volatile uint32_t* paddr;
uint32_t defConfig;
if (bcm2835_smi == MAP_FAILED)
return 0; /* bcm2835_smi_init() failed, or not root */
/* Set the SMI pins to the Alt 1 function to enable SMI access on them */
bcm2835_gpio_fsel(2, BCM2835_GPIO_FSEL_ALT1); /* SA3 */
bcm2835_gpio_fsel(3, BCM2835_GPIO_FSEL_ALT1); /* SA2 */
bcm2835_gpio_fsel(4, BCM2835_GPIO_FSEL_ALT1); /* SA1 */
bcm2835_gpio_fsel(5, BCM2835_GPIO_FSEL_ALT1); /* SA0 */
bcm2835_gpio_fsel(6, BCM2835_GPIO_FSEL_ALT1); /* SOE_N / SE */
bcm2835_gpio_fsel(7, BCM2835_GPIO_FSEL_ALT1); /* SWE_N / SRW_N */
bcm2835_gpio_fsel(8, BCM2835_GPIO_FSEL_ALT1); /* SD0 */
bcm2835_gpio_fsel(9, BCM2835_GPIO_FSEL_ALT1); /* SD1 */
bcm2835_gpio_fsel(10, BCM2835_GPIO_FSEL_ALT1); /* SD2 */
bcm2835_gpio_fsel(11, BCM2835_GPIO_FSEL_ALT1); /* SD3 */
bcm2835_gpio_fsel(12, BCM2835_GPIO_FSEL_ALT1); /* SD4 */
bcm2835_gpio_fsel(13, BCM2835_GPIO_FSEL_ALT1); /* SD5 */
bcm2835_gpio_fsel(14, BCM2835_GPIO_FSEL_ALT1); /* SD6 */
bcm2835_gpio_fsel(15, BCM2835_GPIO_FSEL_ALT1); /* SD7 */
/* Set the SMI clock to 125MHz -> one clock period lasts 8 ns */
paddr = bcm2835_clk + SMICLK_CNTL;
bcm2835_peri_write (paddr, 0x5A000000); /* Disable SMI clock */
paddr = bcm2835_clk + SMICLK_DIV;
bcm2835_peri_write (paddr, 0x5A004000); /* Set clock divider to 4 */
paddr = bcm2835_clk + SMICLK_CNTL;
bcm2835_peri_write (paddr, 0x5A000016); /* Enable SMI clock with PLLD */
/* Set a default useable configuration for the four SMI config slots */
/* 8 bits, Intel mode, always pace, 10 clocks for R/W setup = 80 ns
20 clocks for R/W strobe = 160 ns, 20 clocks for R/W hold = 160 ns,
1 clock for pace control (not used but a value is needed) */
defConfig = BCM2835_SMI_RW_WID8 | BCM2835_SMI_RW_MODE80 |
BCM2835_SMI_RW_PACEALL | (10<<BCM2835_SMI_RW_SETUP_LS) |
(20<<BCM2835_SMI_RW_STROBE_LS) | (20<<BCM2835_SMI_RW_HOLD_LS) |
(1<<BCM2835_SMI_RW_PACE_LS);
paddr = bcm2835_smi + BCM2835_SMI_READ0;
bcm2835_peri_write (paddr, defConfig);
paddr = bcm2835_smi + BCM2835_SMI_WRITE0;
bcm2835_peri_write (paddr, defConfig);
paddr = bcm2835_smi + BCM2835_SMI_READ1;
bcm2835_peri_write (paddr, defConfig);
paddr = bcm2835_smi + BCM2835_SMI_WRITE1;
bcm2835_peri_write (paddr, defConfig);
paddr = bcm2835_smi + BCM2835_SMI_READ2;
bcm2835_peri_write (paddr, defConfig);
paddr = bcm2835_smi + BCM2835_SMI_WRITE2;
bcm2835_peri_write (paddr, defConfig);
paddr = bcm2835_smi + BCM2835_SMI_READ3;
bcm2835_peri_write (paddr, defConfig);
paddr = bcm2835_smi + BCM2835_SMI_WRITE3;
bcm2835_peri_write (paddr, defConfig);
return 1; // OK
} /* bcm2835_smi_begin */
/* --------------------------------------------------- */
void bcm2835_smi_end(void)
{
/* Set all the SMI pins back to input */
bcm2835_gpio_fsel(2, BCM2835_GPIO_FSEL_INPT); /* SA3 */
bcm2835_gpio_fsel(3, BCM2835_GPIO_FSEL_INPT); /* SA2 */
bcm2835_gpio_fsel(4, BCM2835_GPIO_FSEL_INPT); /* SA1 */
bcm2835_gpio_fsel(5, BCM2835_GPIO_FSEL_INPT); /* SA0 */
bcm2835_gpio_fsel(6, BCM2835_GPIO_FSEL_INPT); /* SOE_N / SE */
bcm2835_gpio_fsel(7, BCM2835_GPIO_FSEL_INPT); /* SWE_N / SRW_N */
bcm2835_gpio_fsel(8, BCM2835_GPIO_FSEL_INPT); /* SD0 */
bcm2835_gpio_fsel(9, BCM2835_GPIO_FSEL_INPT); /* SD1 */
bcm2835_gpio_fsel(10, BCM2835_GPIO_FSEL_INPT); /* SD2 */
bcm2835_gpio_fsel(11, BCM2835_GPIO_FSEL_INPT); /* SD3 */
bcm2835_gpio_fsel(12, BCM2835_GPIO_FSEL_INPT); /* SD4 */
bcm2835_gpio_fsel(13, BCM2835_GPIO_FSEL_INPT); /* SD5 */
bcm2835_gpio_fsel(14, BCM2835_GPIO_FSEL_INPT); /* SD6 */
bcm2835_gpio_fsel(15, BCM2835_GPIO_FSEL_INPT); /* SD7 */
} /* bcm2835_smi_end */
/* --------------------------------------------------- */
void bcm2835_smi_set_timing (uint32_t smichannel, uint32_t readchannel,
uint32_t setupcycles, uint32_t strobecycles,
uint32_t holdcycles, uint32_t pacecycles)
{
int RegOffset;
volatile uint32_t* psmitiming;
uint32_t RegValue;
if (readchannel!=0)
{
switch (smichannel)
{
case 0 : RegOffset = BCM2835_SMI_READ0; break;
case 1 : RegOffset = BCM2835_SMI_READ1; break;
case 2 : RegOffset = BCM2835_SMI_READ2; break;
case 3 : RegOffset = BCM2835_SMI_READ3; break;
default : return;
}
}
else
{
switch (smichannel)
{
case 0 : RegOffset = BCM2835_SMI_WRITE0; break;
case 1 : RegOffset = BCM2835_SMI_WRITE1; break;
case 2 : RegOffset = BCM2835_SMI_WRITE2; break;
case 3 : RegOffset = BCM2835_SMI_WRITE3; break;
default : return;
}
}
/* Get current timing configuration of the slot */
psmitiming = bcm2835_smi + RegOffset;
RegValue = bcm2835_peri_read (psmitiming);
/* Clear timing fields in register */
RegValue &= ~(BCM2835_SMI_RW_SETUP_MSK|BCM2835_SMI_RW_HOLD_MSK|BCM2835_SMI_RW_PACE_MSK|BCM2835_SMI_RW_STROBE_MSK);
/* Set timing values and write back to register */
RegValue |= (setupcycles << BCM2835_SMI_RW_SETUP_LS) |
(strobecycles << BCM2835_SMI_RW_STROBE_LS) |
(holdcycles << BCM2835_SMI_RW_HOLD_LS) |
(pacecycles << BCM2835_SMI_RW_PACE_LS);
bcm2835_peri_write (psmitiming, RegValue);
} /* bcm2835_set_smi_timing */
/* --------------------------------------------------- */
void bcm2835_smi_write(uint32_t smichannel, uint8_t data, uint32_t address)
{
uint32_t status;
volatile uint32_t* psmics = bcm2835_smi + BCM2835_SMI_DIRCS;
volatile uint32_t* psmiaddr = bcm2835_smi + BCM2835_SMI_DIRADDR;
volatile uint32_t* psmidata = bcm2835_smi + BCM2835_SMI_DIRDATA;
/* Make sure we use a configuration that exists */
if (smichannel>3) return;
/* clear done bit if set */
if (bcm2835_peri_read(psmics) & BCM2835_SMI_DIRCS_DONE)
{
bcm2835_peri_write (psmics, BCM2835_SMI_DIRCS_DONE);
}
/* Start write transfer */
bcm2835_peri_write (psmiaddr, (smichannel<<BCM2835_SMI_DIRADRS_DEV_LS) | (address&BCM2835_SMI_DIRADRS_MSK));
bcm2835_peri_write (psmidata, data);
bcm2835_peri_write (psmics, BCM2835_SMI_DIRCS_WRITE|BCM2835_SMI_DIRCS_START|BCM2835_SMI_DIRCS_ENABLE);
/* Wait until write cycle is finished */
do {
status = bcm2835_peri_read(psmics);
} while ((status & BCM2835_SMI_DIRCS_DONE)==0);
/* clear done bit */
bcm2835_peri_write (psmics, BCM2835_SMI_DIRCS_DONE);
} /* bcm2835_smi_write */
/* --------------------------------------------------- */
uint32_t bcm2835_smi_read (uint32_t smichannel, uint32_t address)
{
uint32_t status;
uint32_t data;
volatile uint32_t* psmics = bcm2835_smi + BCM2835_SMI_DIRCS;
volatile uint32_t* psmiaddr = bcm2835_smi + BCM2835_SMI_DIRADDR;
volatile uint32_t* psmidata = bcm2835_smi + BCM2835_SMI_DIRDATA;
/* Make sure we use a configuration that exists */
if (smichannel>3) return 0;
/* clear done bit if set */
if (bcm2835_peri_read(psmics) & BCM2835_SMI_DIRCS_DONE)
{
bcm2835_peri_write (psmics, BCM2835_SMI_DIRCS_DONE);
}
/* Start read transfer */
bcm2835_peri_write (psmiaddr, (smichannel<<BCM2835_SMI_DIRADRS_DEV_LS) | (address&BCM2835_SMI_DIRADRS_MSK));
bcm2835_peri_write (psmics, BCM2835_SMI_DIRCS_START|BCM2835_SMI_DIRCS_ENABLE);
/* Wait until read cycle is finished */
do {
status = bcm2835_peri_read(psmics);
} while ((status & BCM2835_SMI_DIRCS_DONE)==0);
/* Read data */
data = bcm2835_peri_read (psmidata);
/* clear done bit */
bcm2835_peri_write (psmics, BCM2835_SMI_DIRCS_DONE);
return data;
} /* bcm2835_smi_read */
/* --------------------------------------------------- */
/* Read the System Timer Counter (64-bits) */
uint64_t bcm2835_st_read(void)
{
volatile uint32_t* paddr;
uint32_t hi, lo;
uint64_t st;
if (bcm2835_st==MAP_FAILED)
return 0;
paddr = bcm2835_st + BCM2835_ST_CHI/4;
hi = bcm2835_peri_read(paddr);
paddr = bcm2835_st + BCM2835_ST_CLO/4;
lo = bcm2835_peri_read(paddr);
paddr = bcm2835_st + BCM2835_ST_CHI/4;
st = bcm2835_peri_read(paddr);
/* Test for overflow */
if (st == hi)
{
st <<= 32;
st += lo;
}
else
{
st <<= 32;
paddr = bcm2835_st + BCM2835_ST_CLO/4;
st += bcm2835_peri_read(paddr);
}
return st;
}
/* Delays for the specified number of microseconds with offset */
void bcm2835_st_delay(uint64_t offset_micros, uint64_t micros)
{
uint64_t compare = offset_micros + micros;
while(bcm2835_st_read() < compare)
;
}
/* PWM */
void bcm2835_pwm_set_clock(uint32_t divisor)
{
if ( bcm2835_clk == MAP_FAILED
|| bcm2835_pwm == MAP_FAILED)
return; /* bcm2835_init() failed or not root */
/* From Gerts code */
divisor &= 0xfff;
/* Stop PWM clock */
bcm2835_peri_write(bcm2835_clk + BCM2835_PWMCLK_CNTL, BCM2835_PWM_PASSWRD | 0x01);
bcm2835_delay(110); /* Prevents clock going slow */
/* Wait for the clock to be not busy */
while ((bcm2835_peri_read(bcm2835_clk + BCM2835_PWMCLK_CNTL) & 0x80) != 0)
bcm2835_delay(1);
/* set the clock divider and enable PWM clock */
bcm2835_peri_write(bcm2835_clk + BCM2835_PWMCLK_DIV, BCM2835_PWM_PASSWRD | (divisor << 12));
bcm2835_peri_write(bcm2835_clk + BCM2835_PWMCLK_CNTL, BCM2835_PWM_PASSWRD | 0x11); /* Source=osc and enable */
}
void bcm2835_pwm_set_mode(uint8_t channel, uint8_t markspace, uint8_t enabled)
{
if ( bcm2835_clk == MAP_FAILED
|| bcm2835_pwm == MAP_FAILED)
return; /* bcm2835_init() failed or not root */
uint32_t control = bcm2835_peri_read(bcm2835_pwm + BCM2835_PWM_CONTROL);
if (channel == 0)
{
if (markspace)
control |= BCM2835_PWM0_MS_MODE;
else
control &= ~BCM2835_PWM0_MS_MODE;
if (enabled)
control |= BCM2835_PWM0_ENABLE;
else
control &= ~BCM2835_PWM0_ENABLE;
}
else if (channel == 1)
{
if (markspace)
control |= BCM2835_PWM1_MS_MODE;
else
control &= ~BCM2835_PWM1_MS_MODE;
if (enabled)
control |= BCM2835_PWM1_ENABLE;
else
control &= ~BCM2835_PWM1_ENABLE;
}
/* If you use the barrier here, wierd things happen, and the commands dont work */
bcm2835_peri_write_nb(bcm2835_pwm + BCM2835_PWM_CONTROL, control);
/* bcm2835_peri_write_nb(bcm2835_pwm + BCM2835_PWM_CONTROL, BCM2835_PWM0_ENABLE | BCM2835_PWM1_ENABLE | BCM2835_PWM0_MS_MODE | BCM2835_PWM1_MS_MODE); */
}
void bcm2835_pwm_set_range(uint8_t channel, uint32_t range)
{
if ( bcm2835_clk == MAP_FAILED
|| bcm2835_pwm == MAP_FAILED)
return; /* bcm2835_init() failed or not root */
if (channel == 0)
bcm2835_peri_write_nb(bcm2835_pwm + BCM2835_PWM0_RANGE, range);
else if (channel == 1)
bcm2835_peri_write_nb(bcm2835_pwm + BCM2835_PWM1_RANGE, range);
}
void bcm2835_pwm_set_data(uint8_t channel, uint32_t data)
{
if ( bcm2835_clk == MAP_FAILED
|| bcm2835_pwm == MAP_FAILED)
return; /* bcm2835_init() failed or not root */
if (channel == 0)
bcm2835_peri_write_nb(bcm2835_pwm + BCM2835_PWM0_DATA, data);
else if (channel == 1)
bcm2835_peri_write_nb(bcm2835_pwm + BCM2835_PWM1_DATA, data);
}
/* Allocate page-aligned memory. */
void *malloc_aligned(size_t size)
{
void *mem;
errno = posix_memalign(&mem, BCM2835_PAGE_SIZE, size);
return (errno ? NULL : mem);
}
/* Map 'size' bytes starting at 'off' in file 'fd' to memory.
// Return mapped address on success, MAP_FAILED otherwise.
// On error print message.
*/
static void *mapmem(const char *msg, size_t size, int fd, off_t off)
{
void *map = mmap(NULL, size, (PROT_READ | PROT_WRITE), MAP_SHARED, fd, off);
if (map == MAP_FAILED)
fprintf(stderr, "bcm2835_init: %s mmap failed: %s\n", msg, strerror(errno));
return map;
}
static void unmapmem(void **pmem, size_t size)
{
if (*pmem == MAP_FAILED) return;
munmap(*pmem, size);
*pmem = MAP_FAILED;
}
/* Initialise this library. */
int bcm2835_init(void)
{
int memfd;
int ok;
FILE *fp;
if (debug)
{
bcm2835_peripherals = (uint32_t*)BCM2835_PERI_BASE;
bcm2835_pads = bcm2835_peripherals + BCM2835_GPIO_PADS/4;
bcm2835_clk = bcm2835_peripherals + BCM2835_CLOCK_BASE/4;
bcm2835_gpio = bcm2835_peripherals + BCM2835_GPIO_BASE/4;
bcm2835_pwm = bcm2835_peripherals + BCM2835_GPIO_PWM/4;
bcm2835_spi0 = bcm2835_peripherals + BCM2835_SPI0_BASE/4;
bcm2835_bsc0 = bcm2835_peripherals + BCM2835_BSC0_BASE/4;
bcm2835_bsc1 = bcm2835_peripherals + BCM2835_BSC1_BASE/4;
bcm2835_st = bcm2835_peripherals + BCM2835_ST_BASE/4;
bcm2835_aux = bcm2835_peripherals + BCM2835_AUX_BASE/4;
bcm2835_spi1 = bcm2835_peripherals + BCM2835_SPI1_BASE/4;
/* BEB */
bcm2835_smi = bcm2835_peripherals + BCM2835_SMI_BASE/4;
return 1; /* Success */
}
/* Figure out the base and size of the peripheral address block
// using the device-tree. Required for RPi2/3/4, optional for RPi 1
*/
if ((fp = fopen(BMC2835_RPI2_DT_FILENAME , "rb")))
{
unsigned char buf[16];
uint32_t base_address;
uint32_t peri_size;
if (fread(buf, 1, sizeof(buf), fp) >= 8)
{
base_address = (buf[4] << 24) |
(buf[5] << 16) |
(buf[6] << 8) |
(buf[7] << 0);
peri_size = (buf[8] << 24) |
(buf[9] << 16) |
(buf[10] << 8) |
(buf[11] << 0);
if (!base_address)
{
/* looks like RPI 4 */
base_address = (buf[8] << 24) |
(buf[9] << 16) |
(buf[10] << 8) |
(buf[11] << 0);
peri_size = (buf[12] << 24) |
(buf[13] << 16) |
(buf[14] << 8) |
(buf[15] << 0);
}
/* check for valid known range formats */
if ((buf[0] == 0x7e) &&
(buf[1] == 0x00) &&
(buf[2] == 0x00) &&
(buf[3] == 0x00) &&
((base_address == BCM2835_PERI_BASE) || (base_address == BCM2835_RPI2_PERI_BASE) || (base_address == BCM2835_RPI4_PERI_BASE)))
{
bcm2835_peripherals_base = (off_t)base_address;
bcm2835_peripherals_size = (size_t)peri_size;
if( base_address == BCM2835_RPI4_PERI_BASE )
{
pud_type_rpi4 = 1;
}
}
}
fclose(fp);
}
/* else we are prob on RPi 1 with BCM2835, and use the hardwired defaults */
/* Now get ready to map the peripherals block
* If we are not root, try for the new /dev/gpiomem interface and accept
* the fact that we can only access GPIO
* else try for the /dev/mem interface and get access to everything
*/
memfd = -1;
ok = 0;
if (geteuid() == 0
#ifdef BCM2835_HAVE_LIBCAP
|| bcm2835_has_capability(CAP_SYS_RAWIO)
#endif
)
{
/* Open the master /dev/mem device */
if ((memfd = open("/dev/mem", O_RDWR | O_SYNC) ) < 0)
{
fprintf(stderr, "bcm2835_init: Unable to open /dev/mem: %s\n",
strerror(errno)) ;
goto exit;
}
/* Base of the peripherals block is mapped to VM */
bcm2835_peripherals = mapmem("gpio", bcm2835_peripherals_size, memfd, bcm2835_peripherals_base);
if (bcm2835_peripherals == MAP_FAILED) goto exit;
/* Now compute the base addresses of various peripherals,
// which are at fixed offsets within the mapped peripherals block
// Caution: bcm2835_peripherals is uint32_t*, so divide offsets by 4
*/
bcm2835_gpio = bcm2835_peripherals + BCM2835_GPIO_BASE/4;
bcm2835_pwm = bcm2835_peripherals + BCM2835_GPIO_PWM/4;
bcm2835_clk = bcm2835_peripherals + BCM2835_CLOCK_BASE/4;
bcm2835_pads = bcm2835_peripherals + BCM2835_GPIO_PADS/4;
bcm2835_spi0 = bcm2835_peripherals + BCM2835_SPI0_BASE/4;
bcm2835_bsc0 = bcm2835_peripherals + BCM2835_BSC0_BASE/4; /* I2C */
bcm2835_bsc1 = bcm2835_peripherals + BCM2835_BSC1_BASE/4; /* I2C */
bcm2835_st = bcm2835_peripherals + BCM2835_ST_BASE/4;
bcm2835_aux = bcm2835_peripherals + BCM2835_AUX_BASE/4;
bcm2835_spi1 = bcm2835_peripherals + BCM2835_SPI1_BASE/4;
/* BEB */
bcm2835_smi = bcm2835_peripherals + BCM2835_SMI_BASE/4;
ok = 1;
}
else
{
/* Not root, try /dev/gpiomem */
/* Open the master /dev/mem device */
if ((memfd = open("/dev/gpiomem", O_RDWR | O_SYNC) ) < 0)
{
fprintf(stderr, "bcm2835_init: Unable to open /dev/gpiomem: %s\n",
strerror(errno)) ;
goto exit;
}
/* Base of the peripherals block is mapped to VM */
bcm2835_peripherals_base = 0;
bcm2835_peripherals = mapmem("gpio", bcm2835_peripherals_size, memfd, bcm2835_peripherals_base);
if (bcm2835_peripherals == MAP_FAILED) goto exit;
bcm2835_gpio = bcm2835_peripherals;
ok = 1;
}
exit:
if (memfd >= 0)
close(memfd);
if (!ok)
bcm2835_close();
return ok;
}
/* Close this library and deallocate everything */
int bcm2835_close(void)
{
if (debug) return 1; /* Success */
unmapmem((void**) &bcm2835_peripherals, bcm2835_peripherals_size);
bcm2835_peripherals = MAP_FAILED;
bcm2835_gpio = MAP_FAILED;
bcm2835_pwm = MAP_FAILED;
bcm2835_clk = MAP_FAILED;
bcm2835_pads = MAP_FAILED;
bcm2835_spi0 = MAP_FAILED;
bcm2835_bsc0 = MAP_FAILED;
bcm2835_bsc1 = MAP_FAILED;
bcm2835_st = MAP_FAILED;
bcm2835_aux = MAP_FAILED;
bcm2835_spi1 = MAP_FAILED;
/* BEB */
bcm2835_smi = MAP_FAILED;
return 1; /* Success */
}
#ifdef BCM2835_TEST
/* this is a simple test program that prints out what it will do rather than
// actually doing it
*/
int main(int argc, char **argv)
{
/* Be non-destructive */
bcm2835_set_debug(1);
if (!bcm2835_init())
return 1;
/* Configure some GPIO pins fo some testing
// Set RPI pin P1-11 to be an output
*/
bcm2835_gpio_fsel(RPI_GPIO_P1_11, BCM2835_GPIO_FSEL_OUTP);
/* Set RPI pin P1-15 to be an input */
bcm2835_gpio_fsel(RPI_GPIO_P1_15, BCM2835_GPIO_FSEL_INPT);
/* with a pullup */
bcm2835_gpio_set_pud(RPI_GPIO_P1_15, BCM2835_GPIO_PUD_UP);
/* And a low detect enable */
bcm2835_gpio_len(RPI_GPIO_P1_15);
/* and input hysteresis disabled on GPIOs 0 to 27 */
bcm2835_gpio_set_pad(BCM2835_PAD_GROUP_GPIO_0_27, BCM2835_PAD_SLEW_RATE_UNLIMITED|BCM2835_PAD_DRIVE_8mA);
#if 1
/* Blink */
while (1)
{
/* Turn it on */
bcm2835_gpio_write(RPI_GPIO_P1_11, HIGH);
/* wait a bit */
bcm2835_delay(500);
/* turn it off */
bcm2835_gpio_write(RPI_GPIO_P1_11, LOW);
/* wait a bit */
bcm2835_delay(500);
}
#endif
#if 0
/* Read input */
while (1)
{
/* Read some data */
uint8_t value = bcm2835_gpio_lev(RPI_GPIO_P1_15);
printf("read from pin 15: %d\n", value);
/* wait a bit */
bcm2835_delay(500);
}
#endif
#if 0
/* Look for a low event detection
// eds will be set whenever pin 15 goes low
*/
while (1)
{
if (bcm2835_gpio_eds(RPI_GPIO_P1_15))
{
/* Now clear the eds flag by setting it to 1 */
bcm2835_gpio_set_eds(RPI_GPIO_P1_15);
printf("low event detect for pin 15\n");
}
/* wait a bit */
bcm2835_delay(500);
}
#endif
if (!bcm2835_close())
return 1;
return 0;
}
#endif